SCENE: Reasoning About Traffic Scenes Using Heterogeneous Graph Neural Networks
نویسندگان
چکیده
Understanding traffic scenes requires considering heterogeneous information about dynamic agents and the static infrastructure. In this work we propose SCENE, a methodology to encode diverse in graphs reason these using Graph Neural Network encoder task-specific decoders. The graphs, whose structures are defined by an ontology, consist of different nodes with type-specific node features relations edge features. order exploit all given use cascaded layers graph convolution. result is encoding scene. Task-specific decoders can be applied predict desired attributes Extensive evaluation on two binary classification tasks show main strength methodology: despite being generic, it even manages outperform baselines. further application our task various knowledge shows its transferability other domains.
منابع مشابه
Probabilistic Logic Reasoning about Traffic Scenes
This paper describes a probabilistic logic reasoning system for traffic scenes based on Markov logic network, whose goal is to provide a high-level interpretation of localisation and behaviour of a vehicle on the road. This information can be used by a lane assistant agent within driver assistance systems. This work adopted an egocentric viewpoint for the vision and the reasoning tasks of the v...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Reasoning about Graph Programs
GP 2 is a non-deterministic programming language for computing by graph transformation. One of the design goals for GP 2 is syntactic and semantic simplicity, to facilitate formal reasoning about programs. In this paper, we demonstrate with four case studies how programmers can prove termination and partial correctness of their solutions. We argue that GP 2’s graph transformation rules, togethe...
متن کاملImage Understanding using Vision and Reasoning through Scene Description Graph
Two of the fundamental tasks in image understanding using text are caption generation and visual question answering [1, 2]. This work presents an intermediate knowledge structure that can be used for both tasks to obtain increased interpretability. We call this knowledge structure Scene Description Graph (SDG), as it is a directed labeled graph, representing objects, actions, regions, as well a...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE robotics and automation letters
سال: 2023
ISSN: ['2377-3766']
DOI: https://doi.org/10.1109/lra.2023.3234771